VF Series

AC INVERTERS vf-7e/Vf--7f/Vf-8XVFF-8z

AC INVERTER LINE-UP

- Sensorless vector control
- Very low acoustic noise
- Multiple protection features
- Type approved under EC, LVD and EMC standards (EN Type)

Single-phase 200V	0.2 kW		
Three-phase 200 V	0.2 kW		
Three-phase 400 V		0.75 kW	3.7 kW

- Type approved under UL and CUL standards (UL Type)
Three-phase 200 V 0.2 kW 3.7kW
Three-phase $400 \mathrm{~V} \quad 0.75 \mathrm{~kW} \quad 3.7 \mathrm{~kW}$

IP20

VF series inverters with enhanced, sophisticated functioning meet the world's toughest approvals, and fulfill the global market's demanding needs.

Standard line-up with the TÜV/UL/CUL-approved inverters

- Approved product range

Complying with TÜV and UL Standards-Designed for improved safety, operability and functionality

VF-7E
Series

Safety

■ Product conforming to the EC Low Voltage Directive (TÜV-approved product)

- Conforms to DIN VDE 0160
$■$ Product conforming to the UL standard

Accident prevention system

- Data lock function controlled by password.

\square Also conforms to the EMC Directive

- By combination use with EMI filter.

■ Programmable password for operational integrity
Electronic thermal overload

Operability

- Improved monitoring functions
- Simple operation for frequency settings.
- The main display on the control panel can be altered between command frequency, output frequency and other settings.
- The four most recent faults are stored in the memory after a power failure to facilitate system diagnosis.

Indication of frequency, trip cause(s), etc.

- Frequency resolution

Digital setting: Min. 0.01 Hz
Analog setting: Min. 0.1 Hz

- Trip cause(s)

Instantaneous overcurrent (ground fault and high temperature), overcurrent, overvoltage, low voltage, auxiliary interlock, overload, operation error and auxiliary stop

Indication of Local/External control for operation signal and frequency signal, parameter number, etc.

Functions

Simple vector control

- Simple vector control ensures a high torque even at low speeds (150% torque at 1 Hz).
- The output torque characteristics for general-purpose motors when operated by an inverter at variable speeds are shown below.

Auto tuning function (with slip compensation)

- This function automatically detects and controls the constant of a motor required for vector control and is applicable to three-phase squirrel-cage motors with 2,4 or 6 poles.

Speed search function

- The inverter is activated without stopping the motor (on a free run) for a changeover from the commercial run to an inverter run or a return from sudden power failure.

Improved tripless function

- This function automatically decreases the frequency when the output current reaches the overcurrent stall level during overload operation.
- When the load returns to normal, the function automatically returns the frequency to its original level and continues operation.
- The function prevents overcurrent trips in equipment such as kneading machines that are used for viscous materials.

■ Panel reset function

- After a trip, you can reset by pressing the stop button on the control panel, rather than through an external signal. (The function can be modified.)

MODELS

Applied motor output	UL Type							
	200V Three-Phase Series				400 V Three-Phase Series			
	Catalogue.No.	Rated output (A)	Rated capacity (kVA)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$	Catalogue.No.	Rated output (A)	Rated capacity (kVA)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$
$\begin{aligned} & 0.2 \mathrm{~kW} \\ & (1 / 2 \mathrm{HP}) \\ & \hline \end{aligned}$	BFV70022E	2.3	0.9	1.2	-	-	-	-
$\begin{aligned} & \text { O. } 4 \mathrm{~kW} \\ & (3 / 4 \mathrm{HP}) \\ & \hline \end{aligned}$	BFV70042E	(2.5)	1.2	1.2	-	-	-	
$\begin{aligned} & \text { O. } 5 \mathrm{kWW} \\ & \text { (iHP) } \end{aligned}$	BFV70072E	(4.1)	2.0	1.5	BFV70074E	2.1	1.7	2.5
$\begin{aligned} & 1.5 \mathrm{KW} \\ & (2 \mathrm{HP}) \end{aligned}$	BFV70152E	(7)	3.2	1.6	BFV70154E	$\begin{gathered} 4^{4} \\ (3.8) \end{gathered}$	3.2	2.7
2. 2 kW (3P)	BFV70222E	(11)	4.4	3.0	BFV70224E	(5.4)	4.8	2.9
$\begin{aligned} & 3.7 \mathrm{~kW} \\ & (5 \mathrm{HP}) \end{aligned}$	BFV70372E	$\begin{aligned} & 17.5 \\ & (16.5) \end{aligned}$	7.0	3.0	BFV70374E	(8.7)	7.5	3.1

Applied motor output	EN Type											
	200 V Single-Phase Series				200V Three-Phase Series				400V Three-Phase Series			
	Catalogue.No.	Rated output (A)	$\begin{aligned} & \text { Rated } \\ & \text { Rutput } \\ & \text { capacity } \\ & \text { (kVA) } \end{aligned}$	Mass (kg)	Catalogue.No.	Rated output (A)	$\begin{aligned} & \text { Rated } \\ & \text { Output } \\ & \text { capacity } \\ & \text { (kVA) } \end{aligned}$	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$	Catalogue.No.	Rated output (A)	$\begin{aligned} & \text { Rated } \\ & \text { output } \\ & \text { capacity } \\ & \text { (kVA) } \end{aligned}$	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$
$\begin{aligned} & 0.2 \mathrm{~kW} \\ & (1 / 2 \mathrm{HP}) \end{aligned}$	BFV70022EBP	2.0	0.8	1.4	BFV70022EP	2.0	0.8	1.4	-	-	-	-
O. 3 kW $(3 / 4 \mathrm{HP}$)	BFV70042EBP	2.8	1.2	1.4	BFV70042EP	2.8	1.2	1.4	-	-	-	-
$\begin{aligned} & 0.75 \mathrm{~kW} \\ & (1 \mathrm{HP}) \end{aligned}$	BFV70072EBP	3.6	1.5	1.5	BFV70072EP	3.6	1.5	1.5	BFV70074EP	2.1	1.5	2.5
(1.5kW	BFV70152EBP	7.0	2.9	2.7	BFV70152EP	7.0	2.9	1.6	BFV70154EP	3.8	2.7	2.7
(2.2 kW	BFV70222EBP	9.1	3.8	3.0	BFV70222EP	9.1	3.8	3.0	BFV70224EP	5.4	3.9	2.9
3.7 kW $(5 \mathrm{HP})$	-	-	-	-	BFV70372EP	15.5	6.4	3.1	BFV70374EP	8.7	6.3	3.1

STANDARD SPECIFICATIONS

The rated output current, rated output capacity, etc. of three phase 200 V and 400 V EN types are slightly different from those UL types.
The figures in parentheses are those when the carrier frequency is set at 2.5 kHz or more.

Models

200V Three-Phase Series
0.2 to 3.7 kW

3-phase, 200 to 230 V (240V)
\square 0.2 to 2.2 kW 3-phase, 200 to 240 V 0.75 to 3.7 kW
150% of rated output current for 1 minute
Three phase, 200 to $230 \mathrm{~V}\left(240 \mathrm{~V}\right.$), $50 / 60 \mathrm{~Hz} ~\left(\begin{array}{l|l|}\text { Single phase, } 200 \text { to } 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} & \text { Three phase, } 380 \text { to } 460 \mathrm{~V}(415 \mathrm{~V}), 50 / 60 \mathrm{~Hz} \\ \hline\end{array}\right.$ $\pm 10 \%$ of rated AC input voltage $\pm 5 \%$ of rated input frequency
Continuous operation at 165 V or more, or at less than 165 V for 15 ms .
COMMON SPECIFICATIONS

Overvoltage category			II
Pollution degree			2
	Output frequency range		0
	Frequency display		D
	Output frequency accuracy		\pm
	Frequency setting resolution		D
Inverter control			
Carrier frequency			
	Start/Stop		S
	Forward/Reverse		S
	Jog operation		O
	Stop select		S
	Reset		S
	Stop frequency		S
	Instantaneous power failure restart		S
$\begin{aligned} & \text { 은 } \\ & \text { ర̀ర } \end{aligned}$	Frequency setting signal		D
	Voltage/frequency characteristics		S
	2nd voltage/frequency characteristics		O
	2nd torque boost level		O
	Torque boost		O
	Accel./Decel. time		0
	Accel./Decel. characteristics		
	Accel./Decel. time 2, 3, and 4		0
	Multispeed frequency settings		U
	Skip frequency setting		U
	Upper frequency setting		S
	Lower frequency setting		S
	Bias and gain frequency settings		B
	External fault trip		S
$\begin{array}{\|l\|} \hline \frac{1}{0} \text {. } \\ \text { Non } \\ \hline \end{array}$	Braking torque	Regenerative braking	2
		DC dynamic braking	W
	Operation frequency signal		O-
	Output signal		O
$\begin{aligned} & \text { त } \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	Operating conditions		O
	Fault trip buffers		D
$\begin{aligned} & \text { 든 } \\ & \text { 응 } \\ & \text { 은 } \end{aligned}$	Current limit		C
	Shut-off (stop)		
	Stall prevention		O
	Ambient temperature and relative humidity		
	Storage and transport temperature, relative humidity		-
	Vibration		5
	Installation condition		A

0.2 to 400 Hz

Digital display
$\pm 0.5 \%$ of selected maximum output frequency $\left(25 \pm 10^{\circ} \mathrm{C}\right)$ for analog setting
Digital setting; $0.01 \mathrm{~Hz}(0.1 \mathrm{~Hz}$ over 100 Hz$)$ Analog setting; $0.1 \mathrm{~Hz}(50 / 60 \mathrm{~Hz}$ by parameter setting)
High carrier frequency sinusoidal PWM control
(Select from V/F control method or simple vector control method)
Variable from 0.8 to 15 kHz
Select with operation panel buttons, 1 a contact signal (either 1a, 1b contact signal)
or wait time setting (0.1 to 100sec.)
Select with operation panel buttons, 1a contact signal (reverse operation prohibit setting possible)
Optional setting for 0.2 to 20 Hz
Optional Accel./Decel. time setting for 0.04 to 1600 seconds
Select from; ramp-to-stop or coast-to-stop
Select from; rest by power supply or by inputting stop signal. External reset setting is also possible.
Select from 0.2 to 60 Hz
Select from; function OFF, restart at OHz , or restart at the setting frequency
Digital setting; Operation panel
Analog setting; 0-5V DC, 0-10V DC, 4-20mA DC, $10 \mathrm{k} \Omega$ potentiometer
input impedance at $50 \mathrm{k} \Omega$ (0-5V DC) 20k Ω (0-10V DC), and approx. 350Ω (4-20mADC)
Select from; $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, optional base frequency setting for 45 Hz to 400 Hz ,
onstant torque, or square low torque pattern
Optional base frequency setting for 45 to 400 Hz
Optional setting for 0 to 40\%
Optional setting for 0 to 40%
0.04 to 1600 sec . Individual accel. and decel. time setting

Linear/S-characteristics (selection switchover)
0.1 to 1600 sec. Individual accel. and decel. time setting Can be linked with multispeed setting.

Up to 8 preset frequency settings (programmable) Can be linked with accel. and decel. time setting.
Up to 3 place settings (skip frequency band setting from 1 to 10 Hz)
Setting for 0.2 to 400 Hz
Setting for 0.2 to 400 Hz
Bias: set for- 99.9 to $400 \mathrm{~Hz} \quad$ Gain: set for 0 to 400 Hz
Select from: auxiliary interlock fault or auxiliary stop (coast-to-stop)
20\% min. (0.2kW; 100\% min. 0.4kW; 80\% min.)
Working at less than setting stop frequency (braking torque and braking time settings) 0-5V DC
Open collector output (50V, 50mA max.) Run signal, arrival signal, frequency detection signal, overload alarm signal, reverse operation signal (selectable)
1c contact output (contact capacity at 250 V AC, resistance load at 0.5A) Fault alarm signal, run signal,
frequency detection signal, overload alarm signal, reverse operation signal (selectable)
Output frequency, setting frequency (F1) (A2) Line speed display (selection switchover)
Output current (AO), output voltage (A1), rotation direction
Display when protective functions are activated (last 4 faults are stored).
Current limit can be set from 1 to 200\% of rated output current
Instantaneous overcurrent, over temperature (SC), overcurrent (OC), low voltage (LU), overvoltage (OU),
auxiliary interlock (AU), overload/electronic thermal overload (OL), operation error (OP),
Overcurrent stall prevention, regenerative overvoltage stall prevention
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right){ }^{* 1}$ (non-freezing), 90% RH max (non-condensing)
$-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right), 95 \%$ RH max.
$5.9 \mathrm{~m} / \mathrm{s}^{2}$ (0.6G) max.
Altitude of 1000 m or less, indoors, free of corrosive gases and dust
P20 screen-protected type
$* 1-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ in case of EN types

MODE DISPLAY (RUN/FAULT)

Mode display	Run signal	Frequency signal	Main display (Examples)								
Ei	Local (Operation panel) Local (Operation panel) External (Control terminal block	Local (Operation panel) Extemal (Control terminal block) Local (Operation panel)	Frequency display	Instantaneous overcurrent during acceleration or abnormal I heating of heat	Overcurrent during acceleration	$\begin{gathered} \text { Excessive } \\ \text { Internal DC } \\ \text { voltage } \\ \text { during } \\ \text { acceleration } \\ \text { (overvoltage) } \end{gathered}$	Undevotage	$\underset{\substack{\text { Auxiliay } \\ \text { interiock }}}{ }$	Overload	$\underset{\substack{\text { Operation } \\ \text { error }}}{ }$	${ }_{\substack{\text { Auxiliay } \\ \text { stop }}}$
Es	Exteral (Contol termina block)	Exernal (Contro terminal block)	50.00	$55:$	It:	0121	[1:	ALi	012	$0 \cdot$	15

PARAMETER SETTINGS

Parameter №.	Parameter name	Parameter object	Setting value or code								Factory setting
87	1st Accel Time	Sets acceleration time: 0.2 Hz to max. output frequency.	0000: 40msec., 0.1~1600sec.								005.0
He	1st Decel Time	Sets deceleration time: max output frequency to 0.2 Hz .	0000: 40msec., 0.1~1600sec.								005.0
\% ${ }^{3}$	Freq. Range	Sets V/F pattern.	50	60	FF	(50:50Hz, 60:60Hz, FF:FREE)					60
5	V/F (Volts-per-Hertz) Curve	Sets V/F curve.	0	1 (0	(0: Constant torque, 1: Reduced torque)						0
5	DC Boost Level	Sets torque boost level.	0 ~ 40\%								05
58	Overload Function	Selects thermal overload functions.	0 OFF	$1 \begin{gathered}\text { without output } \\ \text { Freq. derating }\end{gathered}$		2	with Freq.	output derating			2
57	Overload Current	Sets current value.	0.1~100A								*
5	Local/Ext. Control	Specifies local or external control.	0~6								0
\%	Local/Ext. Freq.	Specifies local or external frequency control (Volts/Current).	Local	$\operatorname{VR}(10 \mathrm{k})$		$\stackrel{2}{0 \sim 5 \mathrm{~V}}$		$\stackrel{3}{0} 10 \mathrm{~V}$			0
\%	Reverse Lockout	Specifies forward-only operation.	$\xrightarrow{\mathrm{O}} \underset{\text { Forward operation/Reverse operation }}{ }$			Forward operation (No reverse operation)					0
17	Stop Mode Select	Specifies ramp-to-stop or coast-to-stop.	Ramp-to-stop		Coast-to-stop						0
\%	Stop Freq.	Sets stop frequency.	0.2~60Hz								00.50
13)	DC Brake Time	Sets DC dynamic brake time.	000:OFF, 0.1~30sec.								000
148	DC Brake Level	Sets DC dynamic brake level.	0~100								00
15	Max. Freq.	Sets maximum output frequency.	$50 \sim 400 \mathrm{~Hz}$								60.00
15	Base Freq.	Sets base frequency.	$45 \sim 400 \mathrm{~Hz}$								60.00
17	Accel. Freq. Hold	Selects accel stall prevention.	$\begin{aligned} & \mathrm{O} \\ & \text { No } \end{aligned}$		Available						1
[838	Decel. Freq. Hold	Selects decel stall prevention.	$\begin{aligned} & \mathrm{O} \\ & \mathrm{No} \end{aligned}$		Available						1
18	Preset Function Select	Selects multi-speed functions.	$\begin{gathered} 0 \\ \text { Multi-speed } \end{gathered}$	d 1 Accel/Decel		Multi-speed linked to Accel/Decel					0
En	Multifunction Input Select	Selects functions for SW 1,2 and 3.	Values	01	12	34	5	67	8	10	0
E ?	SW4 Function Select	Selects a function for SW4.	Second Characteristic 2 selected				$\begin{gathered} 1 \\ \text { Speed search } \end{gathered}$				0
E®	Aux. Interlock	Specifies auxiliary interlock trip or auxiliary stop.	Auxiliary interlock				$\begin{aligned} & 1 \\ & \hline \text { Auxiliary stop } \end{aligned}$				0
E3	Output Terminal Select	Selects detection frequency functions. Selects output terminal functions.	$\begin{gathered} \mathrm{O} \\ \text { Run } \end{gathered}$	$\begin{gathered} 1 \\ \text { Arrival } \end{gathered}$	$\begin{array}{c\|} 2 \\ \text { Overload } \end{array}$	$\begin{array}{\|c\|c} \text { dieuainay } \\ \text { defeciorion } \end{array}$		$\begin{aligned} & \text { Revese } \\ & \hline \text { poperem } \end{aligned}$			0
E-9	Output RY Select	Selects output relay functions.	$\begin{gathered} 0 \\ \text { Run } \end{gathered}$	$\begin{gathered} 1 \\ \text { Arrival } \end{gathered}$	$\begin{gathered} 2 \\ \text { Overload } \end{gathered}$			Reverse			5
EIS	$\begin{array}{\|l\|} \hline \text { Detect Freq. } \\ \text { (Output Terminal) } \\ \hline \end{array}$	Sets detection frequency value.	0000,0.2~400Hz								00.50
Eta	Detect Freq. (Output RY)	Sets detection frequency value.	0000,0.2~400Hz								00.50
E7	Jog Freq.	Sets jog frequency value.	0.2~20Hz								10.00
E8	Jog.Accel. Time	Sets acceleration time of jog operation.	0000: 40msec., 0.1~1600sec.								005.0
58	Jog Decel. Time	Sets deceleration time of jog operation.	0000: 40msec., 0.1~1600sec.								005.0
278	Preset Freq. 2	Sets Preset Frequency 2.	0000: OV stop, 0.2~400Hz								20.00
31	Preset Freq. 3	Sets Preset Frequency 3.	0000: OV stop, 0.2~400Hz								30.00
클	Preset Freq. 4	Sets Preset Frequency 4.	0000: OV stop, 0.2~400Hz								40.00
33	Preset Freq. 5	Sets Preset Frequency 5.	0000: OV stop, 0.2~400Hz								15.00
50-4	Preset Freq. 6	Sets Preset Frequency 6.	0000: OV stop, 0.2~400Hz								25.00
53	Preset Freq. 7	Sets Preset Frequency 7.	0000: OV stop, 0.2~400Hz								35.00
345	Preset Freq. 8	Sets Preset Frequency 8.	0000: OV stop, 0.2~400Hz								45.00
37	Accel.Time 2	Sets Accel. Time 2.	0.1~1600sec.								005.0
548	Decel.Time 2	Sets Decel. Time 2.	0.1~1600sec.								005.0
38	Accel.Time 3	Sets Accel. Time 3.	0.1~1600sec.								005.0
-47	Decel.Time 3	Sets Decel. Time 3.	0.1~1600sec.								005.0
48	Accel.Time 4	Sets Accel. Time 4.	0.1~1600sec.								005.0
-18)	Decel.Time 4	Sets Decel. Time 4.	0.1~1600sec.								005.0
43	2nd Base Freq.	Sets base frequency 2.	45~400Hz								60.00
1-4-4	2nd DC Boost Level	Sets boost level 2.	0~40\%								05
43	Skip Freq. 1	Sets Skip Frequency 1.	0000: OFF, $0.2 \sim 400 \mathrm{~Hz}$								0000

PARAMETER SETTINGS

Parameter №.	Parameter name	Parameter object	Setting value or code				Factory setting
-45	Skip Freq. 2	Sets Skip Frequency 2.	0000: OFF, $0.2 \sim 400 \mathrm{~Hz}$				0000
47	Skip Freq. 3	Sets Skip Frequency 3.	0000: OFF, 0.2~400Hz				0000
-48	Skip Freq.Band Width	Sets skip frequency bands.	0: OFF, 1~10Hz				0
4	Current Limit Function	Sets the current limit function.	00:OFF, 0.1~9.9				00
57	Power Loss Start Mode	Selects restart action when the power is turned on.	$\begin{gathered} 0 \\ \text { Run } \end{gathered}$	$\begin{gathered} 1 \\ \text { Stop } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { 2 } \\ \hline \text { Ruer } \\ \text { wait timer } \\ \hline \end{array}$	$\begin{gathered} 3 \\ \text { Stop } \\ \hline \end{gathered}$	1
51	Ride-Thru Restart	Selects instantaneous power failure function.	$\begin{gathered} \mathrm{O} \\ \mathrm{OFF} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { ostrat } \\ \text { restart } \end{gathered}$	$\begin{gathered} \text { Continued } \\ \text { Cestart } \end{gathered}$		0
E8)	Wait Time	Sets waiting time for parameters 50 and 51.	0.1~100 sec.				000.1
53	Accel./Decel. Pattern	Sets Accel/Decel patterns.		$\begin{gathered} 1 \\ \substack{\text { s.shaped } \\ \text { AccelDecel }} \\ \hline \end{gathered}$			0
54	Lower Freq. Clamp	Sets lower frequency.	$0.2 \sim 400 \mathrm{~Hz}$				00.50
55	Upper Freq. Clamp	Sets upper frequency.	$0.2 \sim 400 \mathrm{~Hz}$				400.0
58	Bias/Gain Function Select	Selects enabling or disabling this function.	$\stackrel{\mathrm{O}}{\mathrm{OFF}}$	O_{1}^{1}			0
57	Bias Freq.	Sets bias frequency.	-99.9~400Hz				000.0
58	Gain Freq.	Sets gain frequency.	0000: OV stop, 0.2~400Hz				60.00
58	0-5V Output Voltage compensation	Adjusts the 0~5V output signal.	75~125\%				100
$5]$	Monitor Select	Selects monitoring modes.	$\begin{gathered} \mathrm{O} \\ \text { Frequency } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { Frequency } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \\ \text { Line speed } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 \\ \hline \text { Line speed } \\ \hline \end{array}$	0
E	Line Speed Multiplier	Sets line speed multiplier.	000.1~100				030.0
ER	Max. Output Voltage	Sets maximum output voltage to motor rating.	000:OFF, 1~500V				000
53	OCS Level	Sets overcurrent stall prevention level.	1~200\%				140
E-4	Carrier Freq.	Sets carrier frequency.	0.8/1.1/1.6kHz, 2.5/5.0/7.5/10.0/12.5/15.0kHz				0.8
55	Vector Control Select	Sets control system.	V/F control Vector control				0
ES	Motor Capacity Set	Sets applicable motor capacity.	0.2/0.4/0.7/1.5/2.2/3.7				*
57	Motor Poles Select	Matches the number of applicable motor poles.	2/4/6				4
$E 8$	Motor Constant Measurement Function	Selects function for constant motor measurement.	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{gathered} \text { voltcomp } \\ \text { measurument } \end{gathered}$		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Recommended } \\ \text { constant } \end{array} \\ \hline \end{array}$	0
58	Voltage Compensation Constant	Sets the voltage compensation constant.	00.01~99.99				Recommended value
77	Slip Compensation Frequency	Sets the slip conpensation frequency.	-5.00~05.00				03.00
71	Password	Sets password for data input (prevents operational errors).	000: OFF, 1~999 Mask code				000
78	Setting Data Clear	Clears factory settings.	0/1/2				0
73	Baud Rate	Sets communication speed.	300/600/1200/2400/4800/9600				9600
74	Stop Bit Length	Sets stop bit length.	1/2				1
75	Parity Check	Sets parity bit.	0/1/2				0
75	No. of Communication Retries	Sets the number of communication retries.	0~10				0
77	CR/LF Select Validity	Selects CR or LF.	0/1/2/3				0

Note: Data can be read only when the power is on.
Parameters in \square can be set during inverter operation.
*The same value as inverter's rating.

FUNCTION SETTING PROCEDURE

Terminal Function Selection by Parameter No. 20

Parameter	$\begin{gathered} \text { Control } \\ \text { terminal } \\ \text { No. } 14 \end{gathered}$	$\begin{gathered} \text { Control } \\ \text { terninal } \\ \text { No. } 15 \\ \hline \end{gathered}$	Control terminal No. 16	Parameter	$\begin{gathered} \text { Control } \\ \text { terninal } \\ \text { No. } 44 \\ \hline \end{gathered}$		Control terminal No. 16
No. 20	SW1	SW2	SW3	No. 20	SW1	SW2	SW3
0	Multispeed function	Multispeed function	Multi-speed function	5	Multispeed function	Auxiliarystopinput	Reset input
1			Reset input	6			Reset lockout
2			Resetlockout	7			Jog function
3			Jog function	8	Analog input changeover		Reset input
4			Auxiliary stop output	9			Reset lockout
				10			Jog function

- Notes on setting parameters

1. While the inverter is in operation, only values for the numbers in the \square of parameter settings can be modified.
2. No values can be modified unless the Lock indicator is off.
3. While the inverter is stopped, it cannot be operated unless the Lock indicator is ON .
4. If the function setting returns to the "Operation Prep. Complete" state during data modification while an external start signal is received, the error code OP" will be displayed, and the inverter will remain inoperative
5. The values set by pressing the Set button are stored in the memory even if the power is off.

Safety

\square Product conforming.to the EC Low Voltage Directive (TÜV-approved product)

- Conforms to DIN VDE O160

■ Product conforming to the UL standard
■ Accident prevention system

- Data lock function controlled by password

■ Also conforms to the EMC Directive

- By combination use with EMI filter

■ Programmable password for operational integrity
\square Electronic thermal overload

Operability

- Easy to operate by means of Digital Parameter Programming on operation panel.
- Enhanced monitoring features and space saving design.
- Super compact design with very powerful and extensive parameters.

Functions

- Matsushita's unique PWM control for good low speed torque and control.
- Programmable 15.0 kHz carrier frequency, low acoustic noise.

Device Features

Extensive Frequency Range Selection:

Frequency range selectable for $50 / 60 \mathrm{~Hz}$ and from 50 to 400 Hz independent of maximum output frequency (50 to 400 Hz). Constant torque and low torque modes can also be selected.

\square Powerful Acceleration/Deceleration:

Torque boost capability offers powerful acceleration at optimum V/F ratio. In addition, the stall prevention feature greatly reduces inverter trips during rapid acceleration or deceleration.

Frequency Skip Feature:

Vibrations resulting from resonance with associated facilities are prevented by skipping resonant frequencies. Up to three frequencies can be skipped, and skip frequency span is user adjustable.

\square Max. Output Voltage Setting:

The inverter output voltage can be adjusted by AVR (Automatic Voltage Regulator).

■ Jog Operation:

Select either local or external jog operation, for which acceleration/deceleration time can be independently specified.

\square Smooth Operation at Low Frequencies:

Our unique PWM control method ensures smooth operation in the low frequency range with minimum torque ripple.

Overload Function Protection:

Complete motor overload protection over a wide range of operating conditions by selection of device functions according to motor characteristics.

- Ride-Through Restart Capability:

Restarts after power failures or surges can be programmed in different modes depending on load or system conditions. A wait time programming feature is also included.

System Features

Operation Status Feedback:

Provides run, arrival, frequency detection and fault alarm signals. The user can create commands for the next process step using those signals.

\square Acceleration/Deceleration linked with Multispeed Operation:

In addition to multispeed (eight speeds) and multiacceleration/deceleration rates (four rates), this device enables combination of those rates (four speeds) with link capability. Flexible speed/acceleration/deceleration combinations allow easy system design.

■Wide Choice of Speed Control:

Motor speed can be controlled with external analog signal, manual control or in two to eight steps with external switching signal.

■ DC Brake Range and Time Adjustment:

To ensure reliable stopping during deceleration, DC braking can be activated when output frequency is reduced below the specified stop frequency $(0.5$ to 60 Hz$)$. The DC brake application time can be adjusted from 0 to 120 seconds.

■ Master-Slave (Proportional) Operation:

The 0-5 V output signal and bias gain features allow proportional operations for up to five inverters. This makes transfer system construction easier.
\square More practical and effective application by combination use with NAiS PLC.

MODELS

Applied motor output	UL Type							
	200V Three-Phase Series				400 V Three-Phase Series			
	Catalogue.No.	Rated output (A) *1	Rated output capacity (KVA)	Mass (kg)	Catalogue.No.	Rated output (A) *1	Rated output capacity (kVA)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$
$\begin{aligned} & 0.2 \mathrm{~kW} \\ & (1 / 2 \mathrm{HP}) \end{aligned}$	BFV70022F	2.0	0.8	1.4	-	-	-	-
(3.4 kW (4HP)	BFV70042F	2.8	1.1	1.4	-	-	-	-
O.75kW	BFV70072F	3.6	1.4	1.5	BFV70074F	2.1	1.7	2.5
(1.5kW	BFV70152F	7.0	2.8	1.6	BFV70154F	3.8	3.0	2.7
(2.2kW	BFV70222F	9.1	3.6	3.0	BFV70224F	5.4	4.3	2.9
3.7 kW $(5 \mathrm{HP})$	BFV70372F	15.5	6.2	3.1	BFV70374F	8.7	6.9	3.1

Applied motor output	EN Type							
	200V Single-Phase Series				400 V Three-Phase Series			
	Catalogue.No.	Rated output 	$\begin{aligned} & \text { Rated } \\ & \text { output } \\ & \text { capocity } \\ & \text { (kVA) } \end{aligned}$	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$	Catalogue.No.	Rated output (A) *2	$\begin{aligned} & \text { Rated } \\ & \text { output } \\ & \text { capacicity } \\ & \text { (kVA) } \end{aligned}$	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$
$\begin{aligned} & 0.2 \mathrm{~kW} \\ & (1 / 2 \mathrm{HP}) \\ & \hline \end{aligned}$	BFV70022FBP	2.0	0.8	1.4	-	-	-	-
$\begin{aligned} & \hline 0.4 W \\ & (3 / 4 H P) \end{aligned}$	BFV70042FBP	2.8	1.2	1.4	-	-	-	-
(O (7 kPW)	BFV70072FBP	3.6	1.5	1.5	BFV70074FP	2.1	1.5	2.5
$\begin{aligned} & 1.5 \mathrm{~kW} \\ & (2 \mathrm{HP}) \\ & \hline \end{aligned}$	BFV70152FBP	7.0	2.9	2.7	BFV70154FP	3.8	2.7	2.7
$\begin{aligned} & 2.2 \mathrm{~kW} \\ & \text { (3P) } \end{aligned}$	BFV70222FBP	9.1	3.8	3.0	BFV70224FP	5.4	3.9	2.9
3.7 kW $(5 \mathrm{HP})$	-	-	-	-	BFV70374FP	8.7	6.3	3.1

1<Precautions>

When using the carrier frequency at 12.5 kHz or 15 kHz , the output current must be decreased to the following values. (The current does not need to be decreased for capacities other than those listed below.)

- 3-phase 200 V input series 0.75 kW
12.5 kHz : (rated output current) $\times 0.95(3.4 \mathrm{~A})$ 15 kHz : (rated output current) $\times 0.9$ (3.2A)
- 3-phase 200V input series 3.7 kW
12.5 kHz : (rated output current) $\times 0.94(14.5 \mathrm{~A})$ 15 kHz : (rated output current) $\times 0.87(13.5 \mathrm{~A})$
- 3-phase 400 V input series 3.7 kW
12.5 kHz : (rated output current) $\times 0.81(7.0 \mathrm{~A})$ $15 \mathrm{kHz} \quad$: (rated output current) $\times 0.62(5.4 \mathrm{~A})$

*2<Precautions>

When using the carrier frequency at 12.5 kHz or 15 kHz , the output current must be decreased to the following values. (The current does not need to be decreased for capacities other than those listed below.)

- Single-phase 200 V input series 0.75 kW 12.5 kHz : (rated output current) $\times 0.95(3.4 \mathrm{~A})$ 15 kHz : (rated output current) $\times 0.9$ (3.2A)
- 3-phase 400V input series 3.7 kW
12.5 kHz : (rated output current) $\times 0.81$ (7.0A) $5 \mathrm{kHz} \quad:($ rated output current) $\times 0.62(5.4 \mathrm{~A})$

STANDARD SPECIFICATIONS

Models

	Rated output voltage
	Overload capacity
	Number of phases, voltage, frequency
	Voltage variations
	Frequency variations
	Instantaneous voltage drop resistance

0.2 to 3.7 kW

3-phase, 200 to 230 V
_
0.2 to 2.2 kW

3-phase, 200 to 240 V
e
150% of rated output current for 1 minute

400V Three-Phase Series
0.75 to 3.7 kW

3-phase, 380 to 460 V (415V)
Three phase, 200 to $230 \mathrm{~V} ; 50 / 60 \mathrm{~Hz} \quad$ Single phase, 200 to $240 \mathrm{~V} ; 50 / 60 \mathrm{~Hz} \quad$ Three phase, 380 to $460 \mathrm{~V}(415 \mathrm{~V}) ; 50 / 60 \mathrm{~Hz}$ $\pm 10 \%$ of rated AC input voltage
$\pm 5 \%$ of rated input frequency
Continuous operation at 165 V or more, or at less than 165 V for 15 ms .

Continuous operation at 330 V or more, or at less than 330 V for 15 ms .
The figures in parentheses are those of EN types.

COMMON SPECIFICATIONS

Overvoltage category			II
Pollution degree			2
	Output frequency range		0.5 to 400 Hz
	Frequency display		Digital display
	Output frequency accuracy		$\pm 0.5 \%$ of selected maximum output frequency ($25 \pm 10^{\circ} \mathrm{C}$) for analog setting
	Frequency setting resolution		Digital setting; $0.1 \mathrm{~Hz}(1 \mathrm{~Hz}$ over 100 Hz) Analog setting; $0.1 \mathrm{~Hz}(50 / 60 \mathrm{~Hz}$ by parameter setting)
Inverter control			High carrier frequency sinusoidal PWM control
Carrier frequency			Variable from 0.8 to 15 kHz
$\begin{aligned} & \text { 으 } \\ & \text { O} \\ & \text { ©0 } \\ & \hline 0 \end{aligned}$	Start/Stop		Select with operation panel buttons, 1a contact signal (either 1a, 1b contact signal) or wait time setting (0.1 to 100 sec .)
	Forward/Reverse		Select with operation panel buttons, 1a contact signal (reverse operation prohibit setting possible)
	Jog operation		Optional setting for 0.5 to 400 Hz Optional Accel./Decel. time setting for 0.04 to 999 seconds
	Stop select		Select from; ramp-to-stop or coast-to-stop
	Reset		Select from; rest by power supply or by inputting stop signal. External reset setting is also possible.
	Stop frequency		Select from 0.5 to 60 Hz
	Instantaneous power failure restart		Select from; function OFF, restart at O Hz, or restart at the setting frequency
$\begin{aligned} & \overline{2} \\ & \text { 응 } \end{aligned}$	Frequency setting signal		Digital setting; Operation panel Analog setting; 0-5V DC, 0-10V DC, 4-20mA DC, $10 \mathrm{k} \Omega$ potentiometer, input impedance at 200k Ω (0-5V DC, 0-10V DC), and approx. 200Ω (4-20mA DC)
	Voltage/frequency characteristics		Select from; $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, optional base frequency setting for 45 Hz to 400 Hz , constant torque, or square low torque pattern
	2nd voltage/frequency characteristics		Optional base frequency setting for 45 to 400 Hz
	2nd torque boost level		Optional setting for 0 to 40\%
	Torque boost		Optional setting for 0 to 40\%
	Accel./Decel. time		0.04 to 999sec. Individual accel. and decel. time setting
	Accel./Decel. time 2, 3, and 4		0.1 to 999sec. Individual accel, and decel. time setting Can be linked with multispeed setting.
	Multispeed frequency settings		Up to 8 preset frequency settings (programmable) Can be linked accel. and decel. time setting.
	Skip frequency setting		Up to 3 place settings (skip frequency band setting from 1 to 10 Hz)
	Upper frequency setting		Setting for 0.5 to 400 Hz
	Lower frequency setting		Setting for 0.5 to 400 Hz
	Bias and gain frequency settings		Bias: set for-99 to 400 Hz Gain: set for 0 to 400 Hz
	External fault trip		Select from: auxiliary interlock fault or auxiliary stop (coast-to-stop)
	Braking torque	Regenerative braking	20\% min. (0.2kW; 100\% min. 0.4kW; 80\% min.)
		DC dynamic braking	Working at less than setting stop frequency (braking torque and braking time settings)
	Operation frequency signal		0-5V DC
	Output signal		Open collector output (50V, 50mA max.) Run signal, arrival signal, frequency detection signal, overload alarm signal, reverse operation signal (selectable)
			1c contact output (contact capacity at 250 V AC, resistance load at 0.5 A) Fault alarm signal, run signal, frequency detection signal, overload alarm signal, reverse operation signal (selectable)
$\begin{aligned} & \frac{\pi}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	Operating conditions		Output frequency, line speed display (selection switchover) Output current, rotation direction
	Fault trip buffers		Display when protective functions are activated (last 4 faults are stored).
	Current limit		Current limit can be set from 1 to 200\% of rated output current
	Shut-off (stop)		Instantaneous overcurrent, over temperature (SC), overcurrent (OC), low voltage (LU), overvoltage (OU), auxiliary interlock (AU), overload/electronic thermal overload (OL), operation error (OP),
	Stall prev	ntion	Overcurrent stall prevention, regenerative overvoltage stall prevention
	Ambient temperature and relative humidity		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right) * 1$ (non-freezing), $90 \% \mathrm{RH}$ max (non-condensing)
	Storage and transport temperature, relative humidity		$-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right), 95 \%$ RH max.
	Vibration		$5.9 \mathrm{~m} / \mathrm{s}^{2}$ (0.6G) max.
	Installation condition		Altitude of 1000m or less
	Enclosure		IP20 screen-protected type

MODE DISPLAY(RUN/FAULT)

Main display (Examples)								
Frequency display	Instantaneous overcurrent during acceleration or abnormal heating of heat	Overcurrent during acceleration	$\begin{gathered} \text { Excessive } \\ \text { internal DC } \\ \text { voltage } \\ \text { during } \\ \text { acceleration } \\ \text { (overvoltage) } \end{gathered}$	Underoltage	Auxiary	Overoad	$\underset{\substack{\text { Operation } \\ \text { eror }}}{\text { a }}$	$\underset{\substack{\text { Auxiliary } \\ \text { siop }}}{ }$
50.0	551	Di:	D2:	1,	9 Fi	012	$0 \cdot$	AS

Note: When the sudden power failure function is selected, "LU" is stored in the trip cause memory and does not send an alarm signal.
PARAMETER SETTINGS

PARAMETER SETTINGS

Parameter No.	Parameter name	Parameter object	Sefting value or code				Factory setting
Fo-45	2nd DC Boost Level	Sets boost level 2.	0~40\%				05
F-17	Skip Freq. 1	Sets Skip Frequency 1.	000: OFF, $0.5 \sim 400 \mathrm{~Hz}$				000
Fr-4	Skip Freq. 2	Sets Skip Frequency 2.	000: OFF, $0.5 \sim 400 \mathrm{~Hz}$				000
Fr-4	Skip Freq. 3	Sets Skip Frequency 3.	000: OFF, $0.5 \sim 400 \mathrm{~Hz}$				000
F-5	Skip Freq.Band Width	Sets skip frequency bands.	0 : OFF, 1~10Hz				0
F5	Current Limit Function	Sets the current limit function.	00:OFF, 0.1~9.9				00
F58]	Power Loss Start Mode	Selects restart action when the power is turned on.	$\begin{gathered} \mathrm{O} \\ \text { Run } \end{gathered}$	$\begin{gathered} 1 \\ \text { Stop } \end{gathered}$	$\begin{gathered} 2 \\ \begin{array}{c} \text { Rutter } \\ \text { Ralit time } \end{array} \end{gathered}$	$\begin{gathered} 3 \\ \text { Stop } \end{gathered}$	1
F53]	Ride-Thru Restart	Selects instantaneous power failure function.	$\begin{gathered} \mathrm{O} \\ \mathrm{OFF} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { ostar } \\ \text { restar } \end{gathered}$	$\begin{aligned} & \text { Continued } \\ & \text { restar } \end{aligned}$		0
F-54	Wait Time	Sets waiting time for parameters 52 and 53.	$0.1 \sim 100 \mathrm{sec}$.				00.1
F53	Lower Freq. Clamp	Sets lower frequency.	$0.5 \sim 400 \mathrm{~Hz}$				00.5
P-58	Upper Freq. Clamp	Sets upper frequency.	$0.5 \sim 400 \mathrm{~Hz}$				400
F57	Bias/Gain Function Select	Selects enabling or disabling this function.	$\begin{gathered} \mathrm{O} \\ \text { OFF } \end{gathered}$	O^{1}			0
F58	Bias Freq.	Sets bias frequency.	-99~400Hz				00.0
F58	Gain Freq.	Sets gain frequency.	000: OV stop, $0.5 \sim 400 \mathrm{~Hz}$				60.0
F6\%	0-5V Output Voltage compensation	Adjusts the 0~5V output signal.	75~125\%				100
FFi	Monitor Select	Selects monitoring modes.	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { Frequency } \\ \hline \end{array}$	$\begin{gathered} 1 \\ \text { Line speed } \\ \hline \end{gathered}$			0
F6,	Line Speed Multiplier	Sets line speed multiplier.	0.1~100				03.0
F63	Max. Output Voltage	Sets maximum output voltage to motor rating.	0:OFF, 1~500V				000
FF-4	OCS Level	Sets overcurrent stall prevention level.	1~200\%				140
P6,	Carrier Freq.	Sets carrier frequency.	0.8/1.1/1.6kHz, 2.5/5.0/7.5/10.0/12.5/15.0kHz				0.8
F68	Password	Sets password for data input (prevents operational errors).	0: OFF, 1~999 Mask code				000
F\%7	Setting Data Clear	Clears factory settings.	0/1				0
FF\%	Fault Display 1	Displays the history of faults 1	Most recent				
F5\%	Fault Display 2	Displays the history of faults 2	Second most recent				
P7	Fault Display 3	Displays the history of faults 3	Third most recent				
F7\%	Fault Display 4	Displays the history of faults 4	Fourth most recent				

Note: Data can be read only when the power is on.
Parameters in \square can be set during inverter operation.

* The same current value as the rated current of the inverter.

FUNCTION SETTING PROCEDURE

[^0]Super reliable, powerful and quiet operation inverters

Safety

Accident prevention system

- Data lock function controlled by password

■ Programmable password for

 operational integrity
■ Electronic thermal overload

- ※The followings are for VF-8X only.

- Product conforming to the EC Low Voltage Directive (TÜV-approved product)
- Conforms to DIN VDE 0160

■ Product conforming to the UL standard \square Also conforms to the EMC Directive
 - By combination use with EMI filter

Operability

- Easy to operate by means of Digital Parameter Programming on operation panel.
- Enhanced monitoring features and space saving design
- Super compact design with very powerful and extensive parameters.

Functions

- Matsushita's unique PWM control for good low speed torque and control.
- Programmable 15.0kHz carrier frequency, low acoustic noise.

Device Features

Extensive Frequency Range Selection:

Frequency range selectable for $50 / 60 \mathrm{~Hz}$ and from 50 to 400 Hz independent of maximum output frequency (50 to 400 Hz). Constant torque and low torque modes can also be selected.

Powerful Acceleration/Deceleration:

Torque boost capability offers powerful acceleration at optimum V/F ratio. In addition, the stall prevention feature greatly reduces inverter trips during rapid acceleration or deceleration.

Frequency Skip Feature:

Vibrations resulting from resonance with associated facilities are prevented by skipping resonant frequencies. Up to three frequencies can be skipped, and skip frequency span is user adjustable.

\square Max. Output Voltage Setting:

The inverter output voltage can be adjusted by AVR (Automatic Voltage Regulator).

■ Jog Operation:

Select either local or external jog operation, for which acceleration/deceleration time can be independently specified.

Smooth Operation at Low Frequencies:

Our unique PWM control method ensures smooth operation in the low frequency range with minimum torque ripple.

Overload Function Protection:

Complete motor overload protection over a wide range of operating conditions by selection of device functions according to motor characteristics.

■ Ride-Through Restart Capability:

Restarts after power failures or surges can be programmed in different modes depending on load or system conditions. A wait time programming feature is also included.

System Features

Operation Status Feedback:

Provides run, arrival, frequency detection and fault alarm signals. The user can create commands for the next process step using those signals.

\square Acceleration/Deceleration linked with Multispeed Operation:

In addition to multispeed (eight speeds) and multiacceleration/deceleration rates (four rates), this device enables combination of those rates (four speeds) with link capability. Flexible speed/acceleration/deceleration combinations allow easy system design.

Wide Choice of Speed Control:

Motor speed can be controlled with external analog signal, manual control or in two to eight steps with external switching signal.

D DC Brake Range and Time Adjustment:

To ensure reliable stopping during deceleration, DC braking can be activated when output frequency is reduced below the specified stop frequency (0.5 to 60 Hz). The DC brake application time can be adjusted from 0 to 30 seconds.

■ Master-Slave (Proportional) Operation:

The 0-5 V output signal and bias gain features allow proportional operations for up to five inverters. This makes transfer system construction easier.
\square More practical and effective application by combination use with NAiS PLC.

MODELS

Applied motor output	VF-8X Series											
	UL Type								EN Type			
	200 V Three-Phase Series				400 V Three-Phase Series				400 V Three-Phase Series			
	Catalogue.No.	$\begin{aligned} & \text { Rated } \\ & \text { Cutput } \\ & \text { cut } \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & \text { Rated } \\ & \text { outtut } \\ & \text { ckVA) } \end{aligned}$	Mass (kg)	Catalogue.No.	$\begin{aligned} & \text { Rated } \\ & \text { outut } \\ & \text { cutrut } \\ & \text { (A) } 1 \text { t } \end{aligned}$	$\begin{aligned} & \text { Rated } \\ & \text { outbut } \\ & \text { (kVA) } \end{aligned}$	Mass (kg)	Catalogue.No.	$\begin{aligned} & \text { Rated } \\ & \text { cutput } \\ & \text { cutp } \\ & (A) \star 1 \end{aligned}$	$\begin{aligned} & \text { Rated } \\ & \text { output } \\ & \text { ckock } \end{aligned}$	Mass (kg)
(5,5kW	BFV80552X	22.0	8.8	4.0	BFV80554X	12.0	9.6	4.0	BFV80554XP	12.0	8.6	4.0
	BFV80752X	33.0	13.1	10.0	BFV80754X	17.0	13.5	4.2	BFV80754XP	17.0	12.2	9.5
(115HP)	BFV81102X	45.0	17.9	13.0	BFV81104X	22.0	17.5	13.0	BFV81104XP	22.0	15.8	13.0
$\left(\begin{array}{l}15 \mathrm{~kW} \\ (20 \mathrm{HP}) \\ \hline\end{array}\right.$	BFV81502X	61.0	24.3	13.0	BFV81504X	31.0	24.7	13.0	BFV81504XP	31.0	22.3	13.0
(25HP)	BFV81902X	75.0	29.9	20.0	BFV81904X	38.0	30.3	20.0	BFV81904XP	38.0	27.3	20.0
(30kW)	BFV82202X	87.0	34.7	20.0	BFV82204X	43.0	34.3	20.0	BFV82204XP	43.0	30.9	20.0
(30kW)	BFV83002X	117.0	46.6	30.0	BFV83004X	61.0	48.6	30.0	BFV83004XP	61.0	43.8	30.0
(50HP)	BFV83702X	140.0	55.8	31.0	BFV83704X	70.0	55.8	31.0	BFV83704XP	70.0	50.3	31.0

Applied motor output	VF-8Z Series			
	400V Three-Phase Series			
	Catalogue.No.	Rated output curtont (A) (A)	$\begin{aligned} & \text { Rated } \\ & \text { output } \\ & \text { catoacity } \\ & \text { (kVA) } \end{aligned}$	Mass (kg)
(5.5kW	BFV80554Z	12.0	9.6	4.0
((10HP) $^{\text {SkW }}$	BFV80754Z	17.0	13.5	4.2
(115W)	BFV81104Z	22.0	17.5	10.0
	BFV81504Z	31.0	24.7	10.0
(25kW)	BFV81904Z	38.0	30.3	13.0
(23kW)	BFV82204Z	43.0	34.3	13.0
30 kW $(40 \mathrm{HP})$	BFV83004Z	61.0	48.6	20.0
(50 HP)	BFV83704Z	70.0	55.8	24.0

*1 Note) The rated output current is for a carrie frequency of 10 kHz or less.
when using at 12.5 kHz or 15 kHz , decrease the rated current to the following values and use. -12.5 kHz : $($ rated current) $\times 0.9$

- 15.0 kHz : (rated current) $\times 0.8$
*2 Note) The rated output current is for a carrie frequency of 10 kHz or less. when using at 12.5 kHz or 15 kHz , decrease the rated current to the following values and use 1) $5.5 \sim 22 \mathrm{~kW}$
$\cdot 12.5 \mathrm{kHz}$: $($ rated current $) \times 0.9$

2) $30,37 \mathrm{~kW}$: (rated current) $\times 0.8$
$\cdot 15.0 \mathrm{kHz}$: $($ rated current $) \times 0.7$

STANDARD SPECIFICATIONS

Models		200V Three-Phase Series	400V Three-Phase Series
Applied motor output		5.5 to 37 kW	5.5 to 37 kW
	Rated output voltage	3-phase, 200 to 230V	3-phase, 380 to 460V (415V)
	Overload capacity	150% of rated output current for 1 minute	
	Number of phases, voltage, frequency	Three phase, 200 to $230 \mathrm{~V} ; 50 / 60 \mathrm{~Hz}$	Three phase, 380 to 460 V (415V); 50/60Hz
	Voltage variations	$\pm 10 \%$ of rated AC input voltage	
	Frequency variations	$\pm 5 \%$ of rated input frequency	
	Instantaneous voltage drop resistance	Continuous operation at 165 V or more, or at less than 165 V for 15 ms .	Continuous operation at 330V or more, or at less than 330 V for 15 ms .

COMMON SPECIFICATIONS

Overvoltage category			ㅍ(Not for VF-8Z)
Pollution degree			2 (Not for VF-8Z)
	Output frequency range		0.2 to 400 Hz
	Frequency display		Digital display
	Output frequency accuracy		$\pm 0.5 \%$ of selected maximum output frequency ($25 \pm 10^{\circ} \mathrm{C}$) for analog setting
	Frequency setting resolution		Digital setting; $0.01 \mathrm{~Hz}(0.1 \mathrm{~Hz}$ over 100 Hz$) \quad$ Analog setting; $0.1 \mathrm{~Hz}(50 / 60 \mathrm{~Hz}$ by parameter setting)
Inverter control			High carrier frequency sinusoidal PWM control
Carrier frequency			Variable from 0.8 to 15 kHz (When using at 12.5 kHz or 15 kHzz , decrease the rated current)
	Start/Stop		Select with operation panel buttons, 1a contact signal (either 1a, 1b contact signal) or wait time setting (0.1 to 100 sec .)
	Forward/Reverse		Select with operation panel buttons, 1a contact signal (reverse operation prohibit setting possible)
	Jog operation		Optional setting for 0.2 to 20 Hz Optional Accel./Decel. time setting for 0.04 to 1600 seconds
	Stop select		Select from; ramp-to-stop or coast-to-stop
	Reset		Select from; reset by power supply or by inputting stop signal. External reset setting is also possible.
	Stop frequency		Select from 0.2 to 60Hz
	Instantaneous power failure restart		Select from; function OFF, restart at O Hz, or restart at the setting frequency
은	Frequency setting signal		Digital setting; Operation panel Analog setting; 0-5V DC, $0-10 \mathrm{~V}$ DC, $4-20 \mathrm{~mA} \mathrm{DC}, 10 \mathrm{k} \Omega$ potentiometer, input impedance at $50 \mathrm{k} \Omega$ (0-5V DC) $20 \mathrm{k} \Omega$ ($0-10 \mathrm{~V}$ DC), and approx. 350Ω (4-20mA DC)
	Voltage/frequency characteristics		Select from; $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, optional base frequency setting for 45 Hz to 400 Hz , constant torque, or square low torque pattern
	2nd voltage/frequency characteristics		Optional base frequency setting for 45 to 400 Hz
	2nd torque boost level		Optional setting for 0 to 40\%
	Torque boost		Optional setting for 0 to 40\%
	Accel./Decel. time		0.04 to 1600 sec . Individual accel. and decel. time setting
	Accel./Decel. characteristics		Linear/S-character characteristics (selection switchover)
	Accel./Decel. time 2, 3, and 4		0.1 to 1600sec. Individual accel. and decel. time setting Can be linked with multispeed setting.
	Multispeed frequency settings		Up to 8 preset frequency settings (programmable) Can be linked accel. and decel. time setting.
	Skip frequency setting		Up to 3 place settings (skip frequency band setting for 1 to 10 Hz)
	Upper frequency setting		Setting for 0.2 to 400 Hz
	Lower frequency setting		Setting for 0.2 to 400 Hz
	Bias and gain frequency settings		Bias: set for-99.9 to 400Hz Gain: set for 0 to 400 Hz
	External fault trip		Select from: auxiliary interlock fault or auxiliary stop (coast-to-stop)
	Braking torque	Regenerative braking	20\% min.
		DC dynamic braking	Working at less than setting stop frequency (braking torque and braking time settings)
	Operation frequency signal		0-5V DC
	Output signal		Open collector output (50V, 50mA max.) Run signal, arrival signal, frequency detection signal, overload alarm signal, reverse operation signal (seléctable)
			1 c contact output (contact capacity at 250 V AC, resistance load at 0.5 A) Fault alarm signal, run signal, frequency detection signal, overload alarm signal, reverse operation signal (selectable)
	Operating conditions		Output frequency, setting frequency (F1) (F2) Line speed display (selection switchover) Output current (AO), output voltage (A1), rotation direction
	Fault trip	uffers	Display when protective functions are activated (last 4 faults are stored).
	Current limit		Current limit can be set from 1 to 200\% of rated output current
	Shut-off (stop)		Instantaneous overcurrent, over temperature (SC), overcurrent (OC), low voltage (LU), overvoltage (OU), auxiliary interlock (AU), overload/electronic thermal overload (OL), operation error (OP),
	Stall prevention		Overcurrent stall prevention, regenerative overvoltage stall prevention
	Ambient temperature and relative humidity		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right){ }^{* 1}$ (non-freezing), $90 \% \mathrm{RH}$ max (non-condensing)
	Storage and transport temperature, relative humidity		$-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right), 95 \% \mathrm{RH}$ max.
	Vibration		$5.9 \mathrm{~m} / \mathrm{s}^{2}$ (0.6G) max.
	Installatio	condition	Altitude of 1000m or less
Enclosure			IP20 screen-protected type

$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ in case of the followings.
UL type(200V $5.5 \mathrm{~kW}, 400 \mathrm{~V} 5.5 \mathrm{~kW} \cdot 7.5 \mathrm{~kW})$

MODE DISPLAY(RUN/FAULT)

Mode display	Run signal	Frequency signal	Main display (Examples)								
EL EF $E L$	Local (Operation nanel) Local (Operaion nanel) Exienal (Control terminal block	Local (Operation panel) Extenal (Control teminina block) Local (Operation panel) Externa (Control teminina block)	Frequency display		Overcurrent during acceleration accelat	$\begin{aligned} & \text { Excessive } \\ & \text { internal DC } \\ & \text { voltage } \\ & \text { during } \\ & \text { acceleration } \\ & \text { (overvoltage) } \end{aligned}$	Undervoltage	Auxiary interlock	Overload	$\begin{aligned} & \text { Operation } \\ & \text { error } \end{aligned}$	$\begin{gathered} \text { Auxiliary } \\ \text { stop } \end{gathered}$
			5000	51	DE:	Di:	1.1)	Pii	01	$0 \cdot \mathrm{~F}$	95

Note: When the sudden power failure function is selected, "LU" is stored in the trip cause memory and does not send an alarm signal.

PARAMETER SETTINGS

PARAMETER SETTINGS

Parameter No.	Parameter name	Parameter object	Sefting value or code				Factory setting
-45	Skip Freq. 2	Sets Skip Frequency 2.	0000: OFF, 0.2~400Hz				0000
47	Skip Freq. 3	Sets Skip Frequency 3.	0000: OFF, 0.2~400Hz				0000
-48	Skip Freq.Band Width	Sets skip frequency bands.	0 : OFF, 1~10Hz				0
-48)	Current Limit Function	Sets the current limit function.	00:OFF, 0.1~9.9				00
57	Power Loss Start Mode	Selects restart action when the power is turned on.	$\begin{gathered} \mathrm{O} \\ \text { Run } \end{gathered}$	$\begin{gathered} 1 \\ \text { Stop } \\ \hline \end{gathered}$		$\begin{gathered} 3 \\ \text { Stop } \\ \hline \end{gathered}$	1
51	Ride-Thru Restart	Selects instantaneous power failure function.	$\begin{gathered} 0 \\ \text { OFF } \end{gathered}$	$\begin{gathered} 1 \\ \text { restart } \\ \text { resta } \end{gathered}$	$\begin{array}{\|c} \\ \begin{array}{c} \text { tinule } \\ \text { Contuned } \\ \text { restart } \end{array} \\ \hline \end{array}$		0
58	Wait Time	Sets waiting time for parameters 50 and 51.	0.1~100 sec.				000.1
53	Accel./Decel. Pattern	Sets Accel/Decel patterns.	$\substack{\text { Linear } \\ \text { Accellocel }}$	$\underset{\substack{\text { S-s.saped } \\ \text { AccelDecel }}}{\substack{\text { and }}}$			0
5-4	Lower Freq. Clamp	Sets lower frequency.	$0.2 \sim 400 \mathrm{~Hz}$				00.50
53	Upper Freq. Clamp	Sets upper frequency.	$0.2 \sim 400 \mathrm{~Hz}$				400.0
58	Bias/Gain Function Select	Selects enabling or disabling this function.	$\stackrel{\mathrm{O}}{\mathrm{OFF}}$	O^{1}			0
57	Bias Freq.	Sets bias frequency.	-99.9~400Hz				000.0
58	Gain Freq.	Sets gain frequency.	0000: OV stop, 0.2~400Hz				60.00
58	0-5V Output Voltage compensation	Adjusts the 0~5V output signal.	75~125\%				100
ET	Monitor Select	Selects monitoring modes.	$\begin{gathered} \mathrm{O} \\ \text { Frequency } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { Frequency } \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \\ \hline \text { Line speed } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 \\ \text { Line speed } \\ \hline \end{array}$	0
51	Line Speed Multiplier	Sets line speed multiplier.	000.1~100				030.0
ERI	Max. Output Voltage	Sets maximum output voltage to motor rating.	000:OFF, 1~500V				000
53	OCS Level	Sets overcurrent stall prevention level.	1~200\%				140
E4	Carrier Freq.	Sets carrier frequency.	0.8/1.1/1.6kHz, 2.5/5.0/7.5/10.0/12.5/15.0kHz				0.8
53	For manufacturer use only.	-	-				-
58	For manufacturer use only.	-	-				-
57	For manufacturer use only.	-	-				-
58	For manufacturer use only.	-	-				-
58	For manufacturer use only.	-	-				-
77	For manufacturer use only.	-	-				-
71	Password	Sets password for data input (prevents operational errors).	000: OFF, 1~999 Mask code				000
78	Setting Data Clear	Clears factory settings.	0/1/2				0
73	Baud Rate	Sets communication speed.	300/600/1200/2400/4800/9600				9600
748	Stop Bit Length	Sets stop bit length.	1/2				1
75	Parity Check	Sets parity bit.	0/1/2				0
75	No. of Communication Retries	Sets the number of communication retries.	0~10				0
77	CR/LF Select Validity	Selects CR or LF.	0/1/2/3				0

Note: Data can be read only when the power is on.
Parameters in \square can be set during inverter operation.
*The same value as inverter's rating.
**5.5~15kW: 005.0, 19~37kW: 015.0

FUNCTION SETTING PROCEDURE

 See parameter No.71. (Parameter No. modified) (Parameter No. modified)

Terminal Function Selection by Parameter No. 20

- Notes on setting parameters

1. While the inverter is in operation, only values for the numbers in the \square of parameter settings can be modified.
2. No values can be modified unless the Lock indicator is off
3. While the inverter is stopped, it cannot be operated unless the Lock indicator is ON .
4. If the function setting returns to the "Operation Prep. Complete" state during data modification while an external start signal is received, the error code "OP" will be displayed, and the inverter will remain inoperative.
5. The values set by pressing the Set button are stored in the memory even if the power is off.

Parameter	$\begin{gathered} \text { Control } \\ \text { terninal } \\ \text { No. } 14 \\ \hline \end{gathered}$	$\begin{gathered} \text { Control } \\ \text { terminal } \\ \text { No.15 } \\ \hline \end{gathered}$	Control terminal No. 16
No. 20	SW1	SW2	SW3
0	Multispeed function	Multispeed function	Multi-speed function
1			Reset input
2			Resetlockout
3			Jog function
4			Auxiliary stop output

Parameter	$\begin{aligned} & \text { Control } \\ & \text { terninal } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Confrol } \\ & \text { tern } \\ & \text { No. } \end{aligned}$	Control terminal No. 16
No. 20	SW1	SW2	SW3
5	Multispeed function	$\begin{aligned} & \text { Auxiliary } \\ & \text { stop } \\ & \text { input } \end{aligned}$	Reset input
6			Reset lockout
7			Jog function
8	$\begin{gathered} \text { Analog } \\ \text { input } \\ \text { changeover } \end{gathered}$		Reset input
9			Reset lockout
10			Jog function

DIMENSIONS Unit:mm
<Figure No. Table>
※The models which are more than 1.5 kW are with fans.

VF-7E		0.2kW	0.4 kW	0.75 kW	1.5kW	2.2 kW	3.7 kW
Three-phase 200V	UL Type	Fig. 1	Fig. 1	Fig. 2	Fig. 3	Fig. 4	Fig. 4
	EN Type	Fig. 2	Fig. 2	Fig. 2	Fig. 3	Fig. 4	Fig. 4
Single-phase 200V	EN Type	Fig. 2	Fig. 2	Fig. 2	Fig. 4	Fig. 4	-
Three-phase 400V	UL/EN Type	-	-	Fig. 4	Fig. 4	Fig. 4	Fig. 4
VF-7F		0.2kW	0.4 kW	0.75 kW	1.5 kW	2.2 kW	3.7 kW
Three-phase 200V	UL Type	Fig. 2	Fig. 2	Fig. 2	Fig. 3	Fig. 4	Fig. 4
Single-phase 200V	EN Type	Fig. 2	Fig. 2	Fig. 2	Fig. 4	Fig. 4	-
Three-phase 400V	UL/EN Type	-	-	Fig. 4	Fig. 4	Fig. 4	Fig. 4
VF-8X		5.5 kW	7.5kW	11 kW	15kW	19/22kW	30/37kW
Three-phase 200V	UL Type	Fig.A	Fig.B	Fig.B	Fig.D-2	Fig.D-3	Fig.D-4
Three-phase 400V	UL Type	Fig.A	Fig.A	Fig.D-2	Fig.D-2	Fig.D-3	Fig.D-4
	EN Type	Fig.A	Fig.D-1	Fig.D-2	Fig.D-2	Fig.D-3	Fig.D-4
VF-8Z		5.5 kW	7.5kW	11 kW	15kW	19/22kW	30/37kW
Three-phase 400V	-	Fig.A	Fig.A	Fig.C	Fig.C	Fig.D-2	Fig.E

WIRING DIAGRAM

VF-7E VF-8X VF-8Z

VF-7F

- Control Circuit Wiring

Note:When setting the frequency with the 4 to 20 mA signal,short circuit terminal Nos. 2 and 10

- For three phase 400 V

Filter rated current	Inverter capacity	Product number	Dimensions				
				W1 L	L L	1 H	D
30A	$5.5,7.5 \mathrm{~kW}$	BFV938X07514		1002	21018	80	
40A	11,15kW	BFV938X15014	147	11225	25022	201	40
60A	19,22kW	BFV938X22014		11232	32029	9014	

- Standard specifications

Power source	Max. 460V AC
Frequency	$50 / 60 \mathrm{~Hz}$
Overload endurance	150% of rated current for 1 minute
Leakage current	Max. 35mA
Ambient temperature	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (no freezing)
humidity	Max. 90% RH (no condensation)
Storage and transporting temp. and humidity	$-10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (no freezing)
Applicable category	Group 1, class A (EN55011:1991)

- Dimensions

OPTION
Panel holder Product

[^1]\qquad

Matsushita Electric Works, Ltd.

AUTOMATION CONTROLS GROUP
■ Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571, Japan
■ Telephone: Japan (81) Osaka (06) 908-1050
■ Facsimile: Japan (81) Osaka (06) 908-5781

[^0]: - Notes on setting parameters

 1. While the inverter is in operation, only values for the numbers in the \square of parameter settings can be modified.
 2. The values set by pressing the set button are stored in the memory even if the power is off.
[^1]: Please contact

